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Four different expressions for the electric dipole transition moment are currently available. In 
this paper, the Hamiltonians appropiate for these expressions are derived by classical, infinitesimal 
transformations. The derivations are restricted to the electric dipole approximation and all second 
and higher order terms in the field strengths are neglected. The equivalence of these Hamiltonians, 
within the stated approximations, shows that none of the formalisms can be given any formal priority. 
The differences which arise when approximate wave functions are used are briefly discussed in the 
light of the present work. 

F/Jr elektrische Dipole-Ubergangsmomente sind bislang vier verschiedene Ausdrticke bekannt. 
In dieser Arbeit werden die entsprechenden Hamilton-Operatoren mittels klassischer Infinitesimal- 
transformationen hergeleitet. Dabei beschr~inkt man sich auf die Dipol-Glieder und vernachl~issigt 
alle hfheren Multipole. Die Gleichwertigkeit dieser Hamilton-Operatoren innerhalb der benutzten 
N~iherung zeigt, dab keinem dieser Formalismen irgend eine Prioritgt gegeben werden kann. Die 
Unterschiede, die sich bei verschiedenen N~iherungsansgtzen fiir die Wellenfunktion ergeben, werden 
kurz diskutiert. 

On dispose de quatre expressions diff&entes pour le moment de transition 61ectrique dipolaire. 
Dans cet article des transformations infinitrsimales classiques sont employres pour obtenir les hamil- 
toniens correspondant /t ces expressions. Seule, l'approximation dipolaire est retenue et tousles 
termes de champ du second ordre et d'ordre suprrieur sont nrglig6s. Dans le cadre de ces approxima- 
tions, l'rquivalence de ces hamiltoniens montre qu'aucun des formalismes n'a de priorit6 formelle. 
Les diffrrences que l'on voit apparaitre par l'emploi de fonctions d'onde approchres sont brirvement 
discutres h la lumi~re du prrsent travail. 

1. In t roduc t ion  

The  theore t ica l  express ion  for the  i n t e n s i t y  of an  e lec t ron ic  t r a n s i t i o n  in  a n  
a t o m  or  m o l e c u l e  c an  be g iven in  a n u m b e r  of different  ways  [1 - 3] w i th in  the  
electric d ipo le  a p p r o x i m a t i o n .  These  express ions  differ in  the  fo rm of the d ipo le  
t r a n s i t i o n  m o m e n t  Qkt for the  exc i ta t ion  f rom the e lec t ronic  s tate  k to the e lec t ron ic  
state I. The  three  u s u a l  express ions  are (in a t o m i c  units) ,  d ipo le  l eng th :  

QkLt = ( T k l ~  r , I  T , )  ( l a )  
V 

dipo le  ve loc i ty :  

QV = (Et - Ek) -1  ( ~ k  I ~  ~ l  ~ , )  (1 b) 
v 
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dipole acceleration: 

A Qkl = (Ez - Ek) - 2 ( ~ p k l ~  (grad~ V) I ~l) (1 c) 
v 

where v runs over all the electrons and V is the (static) potential of the system. 
~k and ~l are the time-independent wave functions for the two states and Ek 

and E l are-their energies. Chert [3] has recently used a quantum mechanical 
hypervirial theorem to generate a fourth dipole expression for the special case 
of a single electron in a spherically symmetric potential. This expression represents 
the time-derivative of the dipole acceleration and is therefore a natural extension 
of the sequence in Eqs. (1). 

The equivalence of the four dipole expressions is usually proven in quantum 
mechanics by some operator manipulations [1, 3] (also called hypervirial theorems) 
which are in fact applications of the Heisenberg equations of motion [4 I. In the 
reference quoted above Chen has shown how~such hypervirial theorems can be 
used, in principle, to generate an infinite number of equivalent dipole expressions. 
Several points should be noted in connection with the usual proof. Firstly, it 
hinges on the requirement that the wave functions ~k and ~l be exact solutions to 
the time-independent Schr6dinger equation for the unperturbed system. Secondly, 
since the sundry expressions traditionally are derived from the velocity form, 
Eq. (lb), this may leave the impression that Eq. (lb) is somehow superior to 
the others when used in conjunction with approximate wave functions. Finally, 
these operator manipulations deal directly with the matrix elements in Eqs. (1) 
and therefore do not disclose the form of the semiclassical Hamiltonians corre- 
sponding to the four alternative formulations. 

In this paper we shall follow instead an approach that originated with Goep- 
pert-Mayer [5], who derived a time-dependent Hamiltonian which leads directly, 
to the dipole length expression, Eq. (la). This Hamiltonian was obtained by 
what amounts to a canonical transformation of the traditional Hamiltonian [4] 
corresponding to Eq. (lb). This transformation was independently discovered 
by Richards [6] and later extended to all orders in a multipole expansion by 
Fiutak [7]. Fiutak [7] and Power et  aI. [8] have gone beyond the semi-classical 
approximation and considered the result of applying the transformation to the 
complete Hamiltonian for field plus electronic system. 

All these articles have considered only the transformation from the dipole 
velocity form, Eq. (lb) to the dipole length form, Eq. (la). Power [2] has recently 
pointed out that the "Schwinger-transformation" in the theory of mass-renor- 
malization leads to an interaction between particles and field which corresponds 
to the dipole acceleration form, Eq. (lc). In this discussion we shall consider 
the classical analogue of the Schwinger-transformation in order to adhere as 
closely as possible to the spirit of the semi-classical theory of radiation. At the 
same time the transformation to the fourth dipole expression appears as a natural 
extension. The sequence of equivalent Hamiltonians can in this way, in principle, 
be extended ad l i b i t um by successive transformations. This approach therefore 
parallels the discussion by Chen [3] in which an infinite number of equivalent 
dipole moment expressions are generated by quantum mechanical hypervirial 
theorems. 
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We shall accordingly in Sect. 2 first briefly reiterate the Goeppert-Mayer 
transformation, which leads to the dipole length Hamiltonian, and subsequently 
perform the transformation to the dipole acceleration Hamiltonian. The trans- 
formation to Chen's dipole expression [3] will be considered in Sect. 3, and it 
will be shown explicitly that the present approach reproduces the result derived 
by Chen for an electron in a spherically symmetric potential. In the course of 
this transformation it will prove convenient to introduce a vector field which 
does not appear to have any precedence in electromagnetic theory. The discussions 
in Sects. 2 and 3 are kept entirely within the electric dipole approximation [1, 4]. 
In the concluding section some comments will be added concerning the fact 
that the various expressions for the dipole transition moment in general lead to 
significantly different results when approximate wave functions are employed. 

2. The Three Hamiltonians Corresponding to Eqs. (1 a, b, c) 

The classical, non-relativistic Hamiltonian for a system of n electrons in 
the combined field from one or more space-fixed nuclei and an externally applied 
radiation field is conventionally written [4, 9] 

1 e 
I4= f~m ~ l P ~ - ~ c a v l 2  + V(q) (2) 

where A~ is the vector potential of the external field at the position of electron v 
and e is a smallness-parameter which indicates that the applied field is considered 
a weak perturbation on the bound motion of the particles. V(q) is the internal 
static potential where q stands for all the cartesian coordinates of the electrons, 
the origin of the coordinate system being conveniently chosen within the region 
of bound motion. The linear momentum p~ of electron v is given by 

e 
p~ = mv~ + s - -  A~. (3) 

c 

Finally, we have assumed that the field is described in the Coulomb (or radiation-) 
gauge 

div A = 0 (4) 

so that the vector potential is purely transverse and the scalar potential ~o of 
the radiation field is zero. 

We shall now invoke the electric dipole approximation according to which 
the value of the vector potential at the position of electron v, A,- -A (qv, t), is 
put equal to its value at the origin of the coordinate system, hence 

Av(t) = A~ (5) 

The Hamiltonian (2) can then be expanded retaining only first order terms in e: 

1 e 
H =  ~ y  Ip~[ 2+  V ( q ) - ~  A ~  (6) 

-7 m C  v 
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The quantum translation of the linear momentum p~ is - ih (z and a time-de- 
pendent perturbation method based on the Hamiltonian (6) leads therefore in 
a well-known way [-4] to the dipole velocity expression (lb) for the transition 
moment. 

Consider now a canonical transformation in which the coordinates and 
momenta q~ and pv are transformed into new variables Q~ and P~ which differ 
from the original ones by infinitesimal amounts only. Such a transformation 
is effected by a generating function [9] 

F2 = Z q , . P , + e Z G ~  (7) 
v "0 

where ~ again is a smallness-parameter and G~ is a single particle generating 
function which depends on the old coordinates q~ and the new momenta P~ of 
electron v. The equations of transformation can then be written [9] 

0 
p~ = Pv + e - -  G~, (8a) 

~q~ 

0 
Q , =  q~ +e-O-~  Gv, (8b) 

K = H  + e ~ - ~ V ~ ,  (8c) 

where K is the transformed Hamiltonian. 
In the Goeppert-Mayer transformation [-5] the generating function is taken as 

e 
G~ = - -  A~ �9 qv. (9) 

c 

The transformed dynamical variables are then by Eqs. (8a, b): 

e 
p~ = P, + e - -  A~ (10a) 

c 

Q~ = q~, OOb) 

and the transformed Hamiltonian becomes 

1 --I e Aol 2 
K =  -~-~m Z ev + e c 

e A O . ~ p ~ + e  AO + V(q) - e - -  �9 
m c  v C 

qv 

or to first order in 

1 
g : ~ ~ IPvl 2 + V(q) - eeE~ �9 ~ q, (11) 

where we have used the fact that the electric field is given by 

E -  A 
c c3t 

(12) 
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and E ~ is the value of E at the origin. According to Eqs. (3) and (10a) the linear 
momentum is 

P~ = mrs. (13) 

The Hamiltonian (11), which is in the form derived by Goeppert-Mayer [5], 
is conceptually by far the simplest starting point for a semi-classical radiation 
theory in the dipole approximation. The simplifications, as compared to Eq. (6), 
are two-fold. Firstly, the coordinates and momenta in Eq. (11) are identical with 
the usual mechanical variables [according to Eqs. (10b) and (13)] whereas the 
momenta in Eq. (6) are explicitly field-dependent according to Eq. (3). The second 
simplification is that the term representing the interaction between the applied 
field and the particles has an elementary physical interpretation, being the energy 
of an electric dipole moment in an electric field. A time-dependent perturbation 
approach based on the Hamiltonian (11) leads therefore to the dipole length 
expression, Eq. (la). 

The Hamiltonian appropiate for the dipole acceleration formalism is obtained 
from the Hamiltonian (6) by use of a generating function of the form 

G'= m~ ~-l-l~ P' (14) 

where ll~ is the electric Hertz vector at the origin. Eq. (14) is the classical 
analogue of the Schwinger transformation [2]. The vector potential is then given 
a s  1 

1 0 
a - n (15) 

c t~t 

According to Eqs. (8) the transformed variables are now 

or from Eqs. (3) and (15) 

and 

p~ = P,  (16a) 

, e 8 0 P',,=rnv,,+e~-~l-I (16b) 

e 
Q; = qv + e~-~c2/-/o. (16c) 

The Hamiltonian is transformed into 

~-m Ie'12+ g ( q ) - e e ~ A ~  
m c  ~ , , ,~ ~ n 

1 "  

to first order in e. Eq. (15) makes the last two terms vanish and we get: 

1 
K ' =  2mm~ [p,[2 + V(q) (17) 

x Since we consider the radiation field in a source-free region the magnetic Hertz vector can 
be put equal to zero, and the field is determined exclusively by the electric Hertz vector [10]. 
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where it remains to insert the transformed coordinates from Eq. (16c): 

= ( 2 ; -  ~ ~ r/0(t). q~ 

The vector H ~ is constant in space and the potential V ( q )  can therefore be expanded 
in a Taylor series around Q'.  Retaining only first order terms in e this gives: 

V ( q )  = V ( Q ' ) -  e o 
m c  ~ I I  �9 ~ (gradvV) . (18) 

V 

Since (2'~ differs only infinitesimally from qv, the gradient of the potential can be 
computed with respect to the original cartesian coordinates q. Combining Eqs. 
(17) and (18) the transformed Hamiltonian can be written 

1 ~ e HO ~(gradvV) (19) K ' =  ,2 
~-m IP;] + V ( Q ' )  - ~ --mc 2 �9 

where the variables are defined in Eqs. (16). 
Eq.(19) represents the desired Hamiltonian for the dipole acceleration 

formalism since a time,dependent perturbation treatment based on this Hamil- 
tonian will lead to transition probabilities in terms of the dipole expression 
Eq. (lc). The present derivation shows that the field quantity which appears in 
the perturbation term is the electric Hertz vector H. It should be noticed that 
the coordinates and momenta are all explicitly field-dependent in this formulation 
[-see Eqs. (16)]. However, the field quantities enter in such a way that the momentum 
P; is in fact equal to the mass times the time-derivative of the generalized 
coordinate (2". 

3. The Hamiltonian Appropiate for the Fourth Dipole Expression 

The transformation from the dipole acceleration Hamiltonian (19) to the 
Hamiltonian appropiate for Chen's dipole expression [3] can be effected by a 
generating function of the form 

e 
G" - T ~  �9 (grad~V) (20) 

rnc  3 

where T O is the constant term in a Taylor expansion of a field T defined by 

1 
n - T, (21) 

c 0t 

/ /be ing the electric Hertz vector. The author knows of no previous discussion 
of a field of this sort. We shall not, however, investigate the properties of this 
field any further here, but only add that there will be a non-trivial gauge problem 
associated with the field (considering the complexity of the gauge problem for 
the Hertz vectors [-10, 11]). 
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The generating function (20) transforms the primed coordinates and momenta, 
Eqs. (16), into new variables given by 

Q~ = Q; ,  (22a) 

P: = P~' + a  ~ - ~  G"-~- P"v + e  ~q~- G~ , (22b) 

where the last step in (22b) is allowed because Q'~ and q~ differ by infinitesimal 
amounts only. For the ith cartesian component of the momentum Eq. (22b) 
becomes: 

P;i = P~i - e - -  �9 grad~ V (22c) 
m c  3 

The transformed Hamiltonian is then found from Eqs. (8c), (19) and (20) and 
turns out to be 

1 e o 
IP~I + V ( Q " ) -  e ~ c  ~ 11 �9 2 (gradvV) K " -  Z , 2 

2m 
~ (23) 

e / e  o5 

The definition of the auxiliary field T, Eq. (21), makes the last two terms cancel 
and the only step left is to insert the transformed momenta from Eqs. (22). The 
resulting Hamiltonian can be written in the form 

1 e 
K " -  2m ~ - p"  ~ 2 + V(Q") - e ~5~c 3 T O. 2 ~/'~P'(" (24) 

v v 

Where ~ is a symmetric, second order tensor 2 with components: 

02 
(~//'~)ij- ~q~i~q~j V(q) .  (25) 

In order to show that the perturbation term in the Hamiltonian (24) correctly 
reproduces Chen's expression for the dipole transition moment, we shall consider 
specifically the case of a single electron in a spherically symmetric potential: 

e 2 
V - (26) 

r 

and furthermore assume that the field is linearly polarized along the z-direction 
so that 

T~ = T ~  

The perturbation term in (24) is in that case equal to 

e T ~ ~  (27) 
m2c 3 [\ c~z 

We are working exclusively in cartesian coordinates and the distinction between covariant 
and contravariant quantities can therefore be disregarded. 
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In a quantum mechanical translation the momentum P" becomes - i h  (7 and 
the term in square brackets in (27) is turned into an operator 3 

( ~ - - ~ g r a d V ) . P " ~ - i h ( f - ~ g r a d V ) .  V. 

If now the central potential (26) is inserted, this operator becomes 

( 1 ~  3 z 0 )  (28) 
- i h  r 3 ~z r 4 ~r 

which is identical to the operator in the dipole expression derived by Chen [3] 
by means of the off-diagonal quantum mechanical hypervirial theorem, 

We have now shown that the Hamiltonian (24) does indeed lead to the fourth 
alternative formulation of the dipole transition moment. The derivation has 
furthermore shown that the field quantity which appears in the interaction 
term in this formulation must obey a relation of the form (21). The choice of 
constant and sign in (21) is of course arbitrary. 

It should be noted that the perturbation terms in the Hamiltonians (19) and 
(24) may have strong singularities which can impose restrictions on the states 
the formulations can be applied to. In the case of the operator (28), which is valid 
in a central coulomb potential, Chen [3] has in fact shown that the singularity 
has the consequence that only excitations between states with orbital angular 
momenta different from zero can be treated. 

4. Concluding Remarks 

The fact that the Hamiltonians (6), (11), (19), and (24) can be converted into 
each other by canonical transformations shows that they are entirely equivalent 
within the two stated approximations: a) the electric dipole approximation in 
which all field quantities are put equal to their value at the origin of the coordinate 
system, and b) the first-order perturbation approximation in which second and 
higher order terms in e (and hence in the field strengths) are neglected. The electric 
dipole approximation is appropiate for most of ordinary absorption and emission 
spectroscopy, but it is insufficient for such areas as magnetic dipole transitions 
and natural optical rotatory power both of which require explicit consideration 
of the spacial variations of the field over the dimensions of the absorbing system 
[1, 12]. The neglect of higher order terms in the field strengths restricts the appli- 
cability of these Hamiltonians to single-photon processes, although it may be 
worthwhile to point out that the Goeppert-Mayer Hamiltonian (11) is in fact 
equivalent to the full Hamiltonian (2), in the dipole approximation. The Hamil- 

3 The operator should rigorously speaking contain an additional term - 1  ih div(OgradV/Oz) 
1 0 2 

- 2 ih ~z  div grad V in order to warrant the hermitian properties [4]. However, the electrostatistic 

potential fulfills Laplace's equation div grad V = 0 (except at the point nucleus), and this term therefore 
does not contribute to the operator (for r different from zero). The problem of the behaviour at the 
point nucleus is connected with Chen's observation [3] that transitions to or from s-orbitals can 
not be treated with this operator (vide infra). 
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tonians (2) and (11) are therefore equally valid for a treatment of multi-photon 
processes [5, 13]. 

The equivalence of the four Hamiltonians means specifically that none of 
the formalisms can be considered more fundamental than the others, and they 
do indeed lead to identical intensities when the exact energy eigenfunctions for 
the unperturbed systems are used as basis for a time-dependent perturbation 
expansion. It is, on the other hand, a significant feature of the calculation of 
electronic transition probabilities that the sundry formalisms in general yield 
very different results for approximate wave functions (see Refs. [14] and [15] and 
references therein). The reason for this is that only for exact energy eigenstates 
do the different Hamiltonians lead to the same time-evolution. The use of approxi- 
mate wave functions is therefore tantamount to an artificial admixture of some 
off-resonance character in the transitions. These off-resonance parts will contribute 
differently in the various formalisms [16], partly because of the neglect of higher 
order terms in the field quantities, and the computed intensities will hence in general 
be different. 
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